Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient.
نویسندگان
چکیده
Nano-impact chronoamperometric experiments are a powerful technique for simultaneously probing both the potential of zero charge (PZC) and the diffusion coefficient (D0) of graphene nanoplatelets (GNPs). The method provides an efficient general approach to material characterisation. Using nano-impact experiments, capacitative impacts can be seen for graphene nanoplatelets of 15 μm width and 6-8 nm thickness. The current transient features seen allow the determination of the PZC of the graphene nanoplatelet in PBS buffer as -0.14 ± 0.03 V (vs. saturated calomel electrode). The diffusion coefficient in the same aqueous medium, isotonic with many biological conditions, for the graphene nanoplatelets is experimentally found to be 2 ± 0.8 × 10-13 m2 s-1. This quick characterisation technique may significantly assist the application of graphene nanoplatelets, or similar nano-materials, in electronic, sensor, and clinical medicinal technologies.
منابع مشابه
Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00623f Click here for additional data file.
متن کامل
Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملHigh-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties
For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets wit...
متن کاملEnhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide
In this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets with Al2O3/HfO2 tunnel oxide allow for larger memory windows at...
متن کاملSmall Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets
The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2015